A Hardy–Littlewood–Sobolev-Type Inequality for Variable Exponents and Applications to Quasilinear Choquard Equations Involving Variable Exponent

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anisotropic quasilinear elliptic equations with variable exponent

We study some anisotropic boundary value problems involving variable exponent growth conditions and we establish the existence and multiplicity of weak solutions by using as main argument critical point theory. 2000 Mathematics Subject Classification: 35J60, 35J62, 35J70.

متن کامل

Equations involving a variable exponent Grushin-type operator

In this paper we define a Grushin-type operator with a variable exponent growth and establish existence results for an equation involving such an operator. A suitable function space setting is introduced. Regarding the tools used in proving the existence of solutions for the equation analyzed here they rely on the critical point theory combined with adequate variational techniques. 2010 Mathema...

متن کامل

A Caffarelli - Kohn - Nirenberg type inequality with variable exponent and applications to PDE ’ s ∗

Given Ω ⊂ R (N ≥ 2) a bounded smooth domain we establish a Caffarelli-Kohn-Nirenberg type inequality on Ω in the case when a variable exponent p(x), of class C, is involved. Our main result is proved under the assumption that there exists a smooth vector function − →a : Ω → R , satisfying div−→a (x) > 0 and −→a (x) · ∇p(x) = 0 for any x ∈ Ω. Particularly, we supplement a result of X. Fan, Q. Zh...

متن کامل

Poincaré-type Inequality for Variable Exponent Spaces of Differential Forms

We prove both local and global Poincaré inequalities with the variable exponent for differential forms in the John domains and s L -averaging domains, which can be considered as generalizations of the existing versions of Poincaré inequalities.

متن کامل

Quasilinear Schrödinger equations involving critical exponents in $mathbb{textbf{R}}^2$

‎We study the existence of soliton solutions for a class of‎ ‎quasilinear elliptic equation in $mathbb{textbf{R}}^2$ with critical exponential growth‎. ‎This model has been proposed in the self-channeling of a‎ ‎high-power ultra short laser in matter‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mediterranean Journal of Mathematics

سال: 2019

ISSN: 1660-5446,1660-5454

DOI: 10.1007/s00009-019-1316-z